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Multidimensional instability of planar detonations, leading to cellular structures, is
studied analytically near Chapman–Jouguet conditions, in the limit of small heat
release, with small (Newtonian) differences between heat capacities, by using an
expansion in a small parameter representing the ratio of the heat release to the
thermal enthalpy of the fresh mixture. In this limit, the dynamics of detonations is
governed by the interaction between the acoustic waves and the heat-release rate
inside the inner detonation structure, the entropy–vorticity wave playing a negligible
role at leading order. This situation is just opposite from that considered in our 1997
study of strongly overdriven detonations. The present analysis offers a step towards
improving our understanding of the cellular structures of ordinary detonations, for
which both the entropy–vorticity waves and the acoustic waves are involved in
the instability mechanism. The relevant bifurcation parameter is identified, involving
the degree of overdrive and the sensitivity of the rate of heat release to temperature
at the Neumann state, and the onset of the instability is studied analytically for a
realistic model of the inner structure of gaseous detonations.

1. Introduction
The Zeldovich–Neumann–Döring structure of gaseous detonation is a strong inert

shock followed by a reaction zone. This zone is controlled by the complex chemical
kinetics of the combustible mixtures. In general, two distinct layers are identified,
an induction zone (adjacent to the shock) followed by an exothermic zone. Across
the induction zone, the rate of heat release increases very slowly from zero, and,
therefore, the temperature does not increase much. At the end of this induction
zone, a transition occurs, the rate of heat release increases strongly and decreases
afterwards continuously, up to the end of the exothermic layer. The lengths of these
two zones are of a similar order of magnitude and both are much larger than the
shock thickness which is, therefore, considered as hydrodynamic discontinuity across
which the Rankine–Hugoniot jump conditions are satisfied. The gas flow is subsonic
relative to the shock, but its velocity is sufficiently large so that the heat conduction
and the molecular diffusion can be neglected.
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The dynamics of gaseous detonations is thus obtained by solving the Euler equations
with exothermic reactions and with boundary conditions at a free boundary (the
perturbed shock). This is a challenging problem, even in the linear approximation
which is sufficient for addressing the stability of the unperturbed planar wave. The
linear modes of an ideal gas flow are easily obtained when the unperturbed solution
is uniform. They take the well-known form of acoustic waves plus an isobaric wave,
called an entropy–vorticity wave, propagating at the velocity of the unperturbed flow.
These modes are more difficult to identify when the density and temperature of the
unperturbed medium vary in space, as is the case across the detonation structure. The
difficulty is further increased for self-sustained detonations, called Chapman–Jouguet
detonations, by a transonic condition appearing at the end of the exothermic reaction.
This difficulty no longer exists for overdriven regimes of piston-supported detonations
across which the flow of shocked gas is subsonic everywhere.

The feedback loop controlling the detonation dynamics may be described
schematically as follows. Disturbances of the shock velocity perturb the rate of
heat release in the bulk gas, essentially by modifying the induction length, which is
sensitive to temperature variations. Those perturbations propagate downstream with
two modes at two different velocities (sound speed and flow velocity), a downstream-
running acoustic mode and an entropy–vorticity wave. The modifications of heat
release, in turn, perturb the flow and thereby affect the shock velocity, through the
Rankine–Hugoniot conditions, after a delay associated with an upstream-running
acoustic wave.

This hyperbolic problem may be solved numerically, either by direct numerical
simulations as explained in the book of Oran & Boris (1987) (see also Bourlioux &
Majda 1992), or by solving the linear stability equations (written in a Fourier-mode
decomposition) by a shooting algorithm, as Short & Stewart (1998) did. The first
results concerning the stability analysis were obtained in the 1960s by the pioneering
work of Erpenbeck within the framework of the standard idealized model of an
irreversible unimolecular reaction with an Arrhenius rate in a series of papers starting
with Erpenbeck (1962) and ending with Erpenbeck (1966). It was Erpenbeck who
apparently first realized that detonations become unstable already when the heat
release is small compared with the thermal enthalpy (see Erpenbeck 1964, 1965)
The stability problem is sufficiently complicated that understanding is best advanced
by exercising a number of different analytical approaches. Some of those carried
out more recently, initiated by Buckmaster (1989), include asymptotic analyses for
large activation energy, assuming simplified scalings of time and length (see Short
& Stewart 1998 for an extensive review of the literature). Some others are based
only on asymptotic expansions in different parameters, for a large Mach number of
propagation considered by Clavin & He (1996b) and Clavin, He & Williams (1997),
or for small heat release studied by Short & Stewart (1999), the scaling of time
resulting from the analysis.

By combining a large propagation Mach number with the Newtonian approxi-
mation (which treats a small difference between the specific heats at constant pressure
and at constant volume, (γ − 1) � 1), Clavin & He (1996b) in one-dimensional
geometry and Clavin et al. (1997) for the multidimensional stability consider the case
of strongly overdriven detonations for a general chemistry of combustion. In this limit,
the shocked flow is sufficiently subsonic so that the quasi-isobaric approximation of
low-Mach-number flow is satisfied everywhere downstream from the shock. The only
mode that controls the dynamics is then the entropy–vorticity wave. For a given
wavenumber of the disturbance, the linear growth rate is obtained as a solution of
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an integral equation involving a single delay and four non-dimensional quantities:
two functions of space w(ξ ) and w′(ξ ),

∫ +∞
0

w(ξ ) dξ =1 and
∫ +∞

0
w′(ξ ) dξ = 0, plus

two scalar parameters representing respectively the large propagation Mach number
(the overdrive factor) and the total amount of chemical heat release. The functions
w(ξ ) and w′(ξ ) are, respectively, the reduced spatial distribution of the heat-release
rate of the planar wave and its deformation when varying the overdrive factor, with
ξ being the reduced distance from the leading shock, normalized, for example, by the
unperturbed induction length. The transition from stable to unstable detonations is
then obtained, showing how detonations that are stable against planar disturbances
may become unstable against multidimensional disturbances. The instability is found
to be promoted by an increase in the thermal sensitivity of the heat-release rate, or
by a decrease of the overdrive factor. These results also show that the frequencies
of the weakly unstable linear modes, which appear at the bifurcation, increase when
increasing the stiffness of the functions w(ξ ) and w′(ξ ), leading to pathological
dynamics for singular distributions of heat release, as for example in the limit of
an infinite activation energy of the standard model, yielding the so-called square-
wave model, w(ξ ) = δ(ξ − 1), w′(ξ ) = − hδ′(ξ − 1), with h being a positive parameter
measuring the sensitivity of the induction length to temperature, and δ(ξ ) and δ′(ξ )
denoting the Dirac delta function and its derivative, respectively. A more surprising
result is that the small effects of the acoustic waves, which were included afterwards
by a perturbation analysis in the one-dimensional case, promote the stability of the
detonation wave (see Clavin & He 1996a). Studies of the properties of the instability
near the bifurcation point are important because they provide a necessary preliminary
step in developing a weakly nonlinear analysis of the dynamics for explaining the
experimentally observed diamond patterns of cellular detonations (see the bifurcation
analysis of Clavin & Denet 2002 with technical details in Clavin 2002a, b, or, for a
different approach, see Yao & Stewart 1996).

An open question is that of determining whether or not, or to what extent, the
conclusions that have been obtained by the multidimensional stability analysis of
strongly overdriven detonations, remain valid for detonations close to the Chapman–
Jouguet regime, where, obviously, the compressible effects can no longer be neglected
at leading order in the flow downstream from the shock. This question cannot be
addressed analytically without further approximations. The purpose of the present
paper is to approach this question by investigating analytically a limiting case,
opposite to the one studied by Clavin et al. (1997) and in which the influence of
the entropy–vorticity wave is negligible, with the dynamics of the detonation being
entirely controlled by the interaction of the acoustic waves and the heat release. This
is the case for Chapman–Jouguet detonations with small heat release, the dynamics
of which was studied by Clavin & Williams (2002) in one-dimensional geometry. The
present paper is an extension of this previous work to the multidimensional stability
analysis.

The proximity of the Chapman–Jouguet regime was not specifically considered
in the stability analysis of Short & Stewart (1999). Their analysis concerns the
standard one-step model for a small ratio of the chemical heat release to the shocked-
gas enthalpy at the shock (the Neumann state), without approximation for γ . For
ordinary values of γ , their results agree well with those of Clavin et al. (1997) at very
large overdrive, but they become less accurate when the overdrive factor is decreased,
as was shown by a comparison with a numerical analysis (see Daou & Clavin 2003).
The smallness of their parameter implies large overdrive and precludes approach to
Chapma–Jouguet conditions. This situation is easily explained by noticing that, for
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a very large overdrive factor, the increase in temperature across the leading shock
becomes larger than that associated with the heat release downstream from the shock,
while, in the Newtonian limit, the quasi-isobaric approximation is still valid for the
smaller overdrive factors for which these two increases in temperature are of the same
order.

The detonation structure that is considered here, namely the structures for regimes
near Chapmpan–Jouguet conditions for small ratios of the chemical heat release to the
enthalpy of the fresh gas mixture, is of a quite different nature. The conditions in the
gas flow are close to a transonic regime everywhere. Such detonations cannot easily
be observed in experiments, since quenching of the exothermic reaction occurs at low
temperature, according to the complex chemical kinetics of the combustion of fuels
such as hydrogen or hydrocarbons. These regimes are, however, worth investigating
theoretically because of the light that the results can shed on the role of the acoustic
waves in the dynamics of detonations, in particular by comparison with the entropy–
vorticity wave exhibited at large overdrive. For ordinary detonations, both types of
waves are present in the flow of the shocked gas. Studying them separately is a good
strategy for improving our understanding of the dynamics of detonation.

The paper is self-contained. The chemical reacting Euler equations are recalled in
§ 2. A particular form of these equations, which turns out to be useful in the limit
considered later, is also given in this section, where the general conditions at the
shock and their linear approximation are also recalled. Particular attention is paid to
the conditions at infinity in § 3. The parameters involved in the asymptotic limit are
presented in § 4, with the corresponding expansions of the conditions at the shock.
The stability of detonations against disturbances with large wavelength, larger than
the detonation thickness, is described in § 5. The length and time scalings for unstable
disturbances are discussed in § 6, where the reduced equations at leading order are
also obtained, together with the corresponding boundary values. Approximations for
the heat-release rate are discussed in § 7. Expressions for the oscillatory frequency,
the linear growth rate and the wavelength of unstable detonations are obtained in § 8,
near bifurcation, from unconditionally stable-to-unstable detonations. The bifurcation
conditions expressed in terms of the parameters defining the propagation regimes are
also discussed in this section. Conclusions are given in § 9.

2. The basic equations
A two-dimensional time-dependent chemically reacting Euler flow of an ideal gas is

considered, with x denoting the coordinate in the main flow direction, y the transverse
coordinate and t time. Velocity components in the x and y directions are denoted by
u and v, respectively, u = (u, v), and the leading shock of the steady planar detonation
whose stability is to be investigated is placed at x = 0. The Euler equations are studied
downstream from this shock, chemistry presumed not to occur ahead of it. Expressed
in terms of the density ρ and temperature T , the sound speed a and pressure are
given by

a =

√
γ

p

ρ
, p =

(γ − 1)

γ
cpρT , (2.1)

where γ is the ratio of the specific heat at constant pressure cp to the specific heat
at constant volume. The equation for mass, momentum and energy can be written,
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respectively, as

1

ρ

Dρ

Dt
+ ∇ · u = 0, ρ

Du
Dt

= −∇p,
1

T

DT

Dt
− (γ − 1)

γ

1

p

Dp

Dt
=

Q

cpT

w

tr
, (2.2)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, Q denotes the chemical heat
release per unit mass of mixture, tr is a representative chemical reaction time and w is
a non-dimensional function of state variables that describes the rate of chemical heat
release. It is convenient to let Y denote the fraction of chemical heat that has been
released. The complex systems of equations for describing a detailed chemical-kinetic
scheme are not addressed explicitly here but instead are written schematically in the
form

DY

Dt
=

w(Y, T )

tr
, (2.3)

where w is regarded as a function of Y and T , the dependence of the reaction
term on the pressure being neglected for simplicity, the dependence on temperature
usually being much stronger. An alternative and often more useful form of the energy
conservation equation, obtainable by use of (2.1) and (2.2), is the entropy equation,
which may be written as

1

γp

Dp

Dt
+ ∇ · u =

Q

cpT

w

tr
, (2.4)

where the equation for mass conservation has been used to eliminate the density.

2.1. A useful form

For the purpose of stability analysis, second-order nonlinear terms that involve v∂/∂y

can be neglected, and it is helpful to define the differential operators

D

Dt
=

∂

∂t
+ u

∂

∂x
,

D±

Dt
=

∂

∂t
+ (u ± a)

∂

∂x
, (2.5)

which would lead to the characteristic equation for the one-dimensional problem. The
conservation equations to be used for the stability analysis may then be written with
the notation (2.5) as

D

Dt
Y =

w(Y, T )

tr
,

D

Dt

[
ln T − (γ − 1)

γ
lnp

]
=

Q

cpT

w

tr
, (2.6)

1

γ

D±

Dt
lnp ± 1

a

D±

Dt
u =

Q

cpT

w

tr
− ∂

∂y
v,

D

Dt
v = − 1

ρ

∂

∂y
p, (2.7)

where the overbar identifies the steady planar solution whose stability is investigated.
The first equation in (2.7) resembles the characteristic equations of the one-
dimensional problem. It is obtained when the equation for conservation of the
longitudinal momentum in (2.2) is multiplied by a/(γp) = 1/(aρ) and added to and
subtracted from (2.4). Equations (2.7) are useful for studying the perturbations of the
flow across the perturbed detonation structure when both the heat release and the
transverse component of the flow velocity are small (see § 6).

These differential equations are subject to boundary conditions at the shock, where
x = 0 to leading order in the linear approximation and at x → +∞. In this paper, we
shall let the subscript u represent conditions ahead of the shock and b conditions as
x → +∞. The condition in the compressed gas at the shock (the Neumann state) will
be represented by the subscript N .
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2.2. Conditions at the shock

Let x = A(y, t) represent the perturbed shock position at transverse position y at
time t . The normal component to the shock of the relative velocity with respect

to the shock of the upstream flow is then (uu − ∂A/∂t)/
√

1 + (∂A/∂y)2. Since the
linear analysis implies neglecting terms quadratic in (∂A/∂y), the corresponding Mach
number is MU = Mu − (∂A/∂t)/au, where au and Mu are the sound speed ahead of
the shock and the propagation Mach number of the planar detonation. MU serves as
the approach-flow Mach number for writing shock jump conditions, which then turn
out to be the same as those for the one-dimensional problem,

pN

pu

= 1 +
2γ

γ + 1

(
M2

U − 1
)
,

ρN

ρu

=
1 +

(
M2

U − 1
)

1 + ((γ − 1)/(γ + 1))
(
M2

U − 1
) . (2.8)

This can be employed to derive the perturbations of pressure and density at the
Neumann state

δpN

γpN

= − 4

(γ + 1)

Mu[
1 + (2γ /(γ + 1))

(
M2

u − 1
)] ∂A/∂t

au

, (2.9)

δρN

ρN

= − 4

(γ + 1)Mu

1[
1 + ((γ − 1)/(γ + 1))

(
M2

u − 1
)] ∂A/∂t

au

. (2.10)

The temperature at the front is obtained from these equations when using the perfect
gas law (2.1). The additional requirement of continuity of the tangential component of
velocity δvN = (uu − uN )∂A/∂y, and the mass conservation ρN (uN − ∂A/∂t) = ρu(uu −
∂A/∂t), namely δuN =(1 − ρu/ρN )∂A/∂t − uN (δρN/ρN ), can be employed to derive

δuN

au

=
2
(
M2

u + 1
)

(γ + 1)M2
u

∂A/∂t

au

,
δvN

au

=
2
(
M2

u − 1
)

(γ + 1)Mu

∂A/∂y, (2.11)

which shows that δuN is of order ∂A/∂t irrespective of whether Mu is near unity or
large, while δvN is small compared with au∂A/∂y when Mu is near unity, but large
compared with this quantity when Mu is large.

3. Conditions at infinity
3.1. General considerations

The steady problem can be viewed as one in which the detonation is supported by
a piston moving at the constant subsonic velocity ub, Mb = ub/ab � 1, ab denoting
the sound speed in the burnt gases. The y-axis is along the unperturbed detonation
front, and the unperturbed flow is in the direction of positive x, limx→+∞ u = ub > 0,
limx→−∞ u= uu > 0, Mu = uu/au > 1. We shall not address complications associated
with reversible chemical reactions possibly occurring in these products, but instead
discuss intricacies in downstream boundary conditions for the detonation imposed
by the presence of an inert ideal gas constituting a uniform medium downstream.
The stability analysis of the detonation requires proper selections to be made in the
perturbed solutions in the downstream gas, expressed here for any function f (x, y, t)
in the Fourier representation δf (x)eiky+σ t , with k being the real parts representing
physical variables.

Attention must be given to the fact that, according to the linear solution of the
conservation equations in a uniform medium, the downstream gas can support both
acoustic waves and entropy–vorticity waves. The pressure disturbance obeys the
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d’Alembert equation with sound speed ab and thus must have δp(x) = δpbe
il±x as the

form of the perturbation solution, where δpb is a constant, and

il±
|k| =

Mb(σ/ab|k|) ±
√(

1 − M2
b

)
+ (σ/abk)2(

1 − M2
b

) , δp = δpbe
σ t+i(l±x+ky), (3.1)

which approaches the well-known result il± = ± k in the limit of infinite sound speed
(zero Mach number). The quantity σ/abk may be expressed in terms of l± and k

from (3.1), leading to the well-known result for the frequency of a purely oscillatory
acoustic mode, σ = iω, ω > 0, ω2 > (1 − M2

b )a
2
bk

2,

ω = ab

√
l2± + k2 − ubl±, (3.2)

which shows the frequency shift of the Doppler effect. The solutions for the perturbed
velocity components are the sum of an acoustic wave and an entropy–vorticity wave
which is simply convected by the unperturbed flow velocity δuev (x − ubt, y),

δu(x) = − il±ub

σ + il±ub

δpb

ρbub

eil±x +

[
δub +

il±ub

σ + il±ub

δpb

ρbub

]
e
σ x

ub , (3.3)

δv(x) = − ikub

σ + il±ub

δpb

ρbub

eil±x +

[
δvb +

ikub

σ + il±ub

δpb

ρbub

]
e
σ x

ub , (3.4)

with δub and δvb also being constants. Here each first term is an acoustic mode, like
the solution δp(x), the rest being the vorticity wave. This last wave must satisfy the
incompressibility condition, ∂δuev/∂x + ∂δvev/∂y = 0, found from (3.3) and (3.4) to
obtain

±

√(
1 − M2

b

)
k2 +

(
σ

ab

)2
δpb

ρbub

+ σ
δub

ub

− ikδvb = 0, (3.5)

with the same sign convention as in (3.1). Equation (3.5), which was first written
explicitly by Buckmaster & Ludford (1988), is obtained by using the relation

il±σ + ubk
2 = ±(σ + il±ub)

√(
1 − M2

b

)
k2 + (σ/ab)2,

when the squared root is expressed according to (3.1). With the perfect gas law
γp = ρa2, (3.5) takes the form

±

√(
1 − M2

b

)
+

(
σ

abk

)2
δpb

γpb

= −
(

σ

abk

)
δub

ab

+ iMb

δvb

ab

. (3.6)

3.2. Planar case

The planar limit of result (3.5), k → 0, has δub = ± δpb/ρbab and reproduces from
(3.1) the classical one-dimensional acoustic dispersion relation in a moving medium
σ = ilab(1 ∓ Mb), exhibiting the Doppler effect. Since δp is purely acoustic, this shows
that any streamwise velocity perturbation is excluded from occurring in the entropy
wave in the planar limit, this wave carrying only temperature and density fluctuations.

3.3. Boundedness condition

Unstable acoustical modes, namely those having Re(σ ) > 0, are physically relevant
only if they are bounded at infinity, Re(il±) � 0, l

(i)
± > 0, l± = l

(r)
± + il(i)± . Adopting the

normal convention that real parts of square roots are taken to be positive, we find
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that the negative sign must be selected in (3.1), l = l−, and thus also in (3.5) and (3.6).
This removes one of the two acoustic eigenmodes and enables a dispersion relation
to be obtained from (3.5), which then serves as a compatibility condition for the
perturbations (δpb, δub, δvb) at the exit of the reaction zone (the entrance to the inert
region downstream). In the planar limit this reduces simply to δub = δpb/ρbab, the
downstream boundary condition for the reaction zone employed previously for the
planar problem.

In multidimensional problems, the sign restriction corresponds to a radiation
condition that requires acoustic waves associated with unstable modes to propagate
downstream, preventing such waves from travelling upstream from infinity to impinge
on the detonation,

radiation condition: ub − ab

l
(r)
−√

l
(r)2
− + k2

> 0, (3.7)

where the second term is the x-component of the propagation velocity of the acoustic
wave in the moving frame of the burnt gas. The radiation condition, M2

b k
2 > (1 −

M2
b )l

(r)2
− , is easily proved from (3.1) for unstable conditions close to a Hopf bifurcation,

σ = iω + s, with 0 < s � ω and ω2 < (1 − M2
b )a

2
bk

2.

3.4. Neutral modes

When the stability analysis exhibits neutral modes only Re(σ ) = 0, one has usually
l(i) = 0, l = l(r), and a different interpretation is needed (see D’Yakov 1954 and
Kontorovich 1957). Effects of incoming sound waves from infinity and their
reflection when impinging the shock then need to be considered. When there is
an eigenmode satisfying a radiation condition and the reflected wave matches the
radiating eigenmode, the reflection coefficient diverges, implying instability. Shocks
and detonations in ideal gases, with internal structure neglected, have neutral modes
only, but no radiating modes,

incoming sound wave (upstream-running mode): ub − ab

l±√
l2± + k2

< 0, (3.8)

and therefore are stable according to this criterion (see § 5 for the case of detonations).
Instabilities, however, arise when the internal detonation structure is taken into
account.

4. Near CJ conditions for small heat release
We are interested in the limit of small heat release, and, as in the study of the one-

dimensional instability of Clavin & Williams (2002) the small expansion parameter ε

is defined as

ε =

[(
γ + 1

2

)
Q

cpTu

]1/2

. (4.1)

According to the Rankine–Hugoniot relations, the Chapman–Jouguet condition
corresponds to (Mu − M−1

u ) = 2ε, namely Mu =
√

1 + ε2 + ε, and planar detonations
propagating at constant velocity exist only if f � 1, where

f =

(
M2

u − 1

2εMu

)2

(4.2)
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is a scaled overdrive factor which decreases to unity at Chapman–Jouguet conditions
(see Appendix A). Values of f larger than unity correspond to moderately overdriven
regimes, still close to Chapman–Jouguet conditions, provided that the condition
ε2f � 1 is satisfied. To leading order in the limit ε

√
f → 0, one gets

M2
u − 1 ≈ 1 − M2

N = 2ε
√

f + · · · , T N

T u

− 1 = 2(γ − 1)ε
√

f + · · · , (4.3)

and from (2.8)–(2.11),

πN =
4γ ε

√
f

γ + 1
+ · · · , θN = 2(γ − 1)ε

√
f + · · · , μN = 1 − ε

√
f + · · · , (4.4)

δπN = − 4

γ + 1

[
1 − 3γ − 1

γ + 1
ε
√

f + · · ·
]

∂A/∂t

au

, (4.5)

δθN = −2(γ − 1)(1 + ε
√

f + · · ·)∂A/∂t

au

, (4.6)

δμN =
4

γ + 1

[
1 − ε

√
f + · · ·

]∂A/∂t

au

, δνN =
4

γ + 1
ε
√

f (1 + · · ·)∂A

∂Y
, (4.7)

where non-dimensional dependent variables have been introduced,

π = (1/γ ) ln(p/pu), θ = (T − T u)/T u, μ = u/au, ν = v/au. (4.8)

From (4.3), it is clear that

Mu = 1 + ε
√

f + ε2f/2 + · · ·

which is unity at leading order, emphasizing the transonic character of the problem.
In the limit ε → 0, the final temperature exceeds the Neumann temperature only if

(γ − 1) <
ε√

f −
√

f − 1
. (4.9)

In order to preserve realistic temperature profiles, a Newtonian limit is addressed in
which (γ − 1) is of order ε or smaller,

(γ − 1) = O(ε), (4.10)

and the temperature increase of the compressed gas is of order ε2,

T b − T N

T u

= −(γ − 1)ε(
√

f −
√

f − 1) + ε2 + · · · , (4.11)

where the second term is the chemical heat release and the first term describes a
cooling resulting from compressible effects. The conditions at the burnt-gas state are
given by (see Appendix A)

1−M2
b = 2ε

√
f − 1+· · · , πb = ε(

√
f +

√
f − 1), μb = 1−ε

√
f − 1+ · · · . (4.12)

Note that the relative variations of pressure and velocity across the compressed gas
are of order ε, while the relative variation of temperature is smaller, of order ε2.

5. Stability at long wavelength
Considering detonations that are stable against planar disturbances, modifications

to the internal detonation structure can be neglected whenever the wavelength of
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the disturbances is much larger than the detonation thickness. In such cases, the
detonation is approximated by hydrodynamic discontinuity. The dispersion relation
is, therefore, obtained by requiring that condition (3.6) is satisfied by the values of
pressure and velocities at the burnt-gas side of the detonation; these values being easily
obtained from the jump conditions in the planar approximation (see Appendix B).
By introducing (A 8), (B 4), (B 10) and (B 11) into (3.6), the result

±�S

√
2ε(1 + ε�)

√
f − 1 + S2 = −S2(1 − ε

√
f ) − ε

√
f − 1(1 + ε�) (5.1)

is obtained, where the notations

S =
σ

ab|k| and ε =
ε

Mu

have been introduced. Observe that the quantities ±
√

· · · in (3.1) and (5.1) are the
same except for a factor k2.

The quadratic equation for S2 obtained from (5.1) has two negative solutions, so
that the eigenmodes correspond to two oscillatory acoustic modes. This can be seen
when expression (B 6) for � is introduced into (5.1) by noticing that the terms of
lower order than ε2 in the coefficient in front of both S4 and S2 cancel. Collecting the
terms of order ε2 then yields

−2�2S
4 + 2

√
f − 1(�2 − �2 −

√
f )S2 − (f − 1) = 0,

where the quantities �2, �2 and �2 are defined in Appendices A and B (see (A 9),
(B 6), (B 7) and (B 12)). To leading order in the limit ε

√
f → 0, γ − 1 = O(ε), the

dispersion relation then takes the form

S4 + 2(
√

f /
√

f − 1)S2 + 1 = 0, (5.2)

which is obtained after the cancellation of the factor (f − 1). There are two negative
roots of this equation, namely

S2 = − (
√

f ± 1)√
f − 1

, (5.3)

and therefore the quantities S and σ are purely imaginary numbers, σ = iω,
S = iω/ab|k|, corresponding to two acoustic modes with frequency of the order of
ab|k|,

ω

ab|k| =

√√
f ± 1

(f − 1)1/4
, (5.4)

ω = O(ab|k|), where the frequency has been taken positive, ω > 0. The + and − signs
in (5.3) and (5.4) correspond to two admissible solutions of (5.1). To leading order, the
right-hand side of (5.1) is equal to ω2/(abk)2 and � = − 1 on the left-hand side. The
quantity ±

√
· · · on the left-hand side of (5.1) must, therefore, be equal to ∓iω/ab|k|,

and, according to (3.1),

l =
ω/ab

ε
√

f − 1
,

|k|
l

= ε
(f − 1)3/4√√

f ± 1
, (5.5)

meaning |k|/l =O(ε).
The following outcomes are worth stressing:
(a) The two acoustic modes (plus two other ones, symmetric relatively to the x

axis) propagate in a quasi-perpendicular direction to the unperturbed detonation
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front (|k|/l � 1). These modes are both upstream running with a relative velocity
normal to the unperturbed detonation of order ε times the sound speed. This is seen
by expanding the quantity in (3.7) and (3.8) for l > 0 and |k|/l small

ur ≡ ub − ab

l√
l2 + k2

≈ ab

[
(Mb − 1) +

1

2

(
k

l

)2

+ · · ·
]

, (5.6)

and by using (A 8) and (5.5), yielding ur = − ε
√

f − 1[1 + O(ε2)], which is negative,
implying that the detonation wave is stable against disturbances with large wavelength,
in the sense of § 3.4. This is consistent with the stability condition against planar
disturbances which was required in order to consider that the inner structure of the
shock is the same as in the planar case.

(b) The perturbed solution in (3.3) and (3.4) is that of a two-length-scale problem:
an acoustic wave and a vorticity wave involving, respectively, a short length scale
(2π/l), and a longer one (2π/k), which is also the typical size of the wrinkles of the
shock front.

(c) The amplitude of the longitudinal component of the flow velocity in the acoustic
wave is of the order of ∂A/∂t (the perturbation of the front velocity). The amplitude
of the transverse velocity is ε times smaller. The amplitude of the two components
of velocity associated with the vorticity wave is even smaller, ε2 times smaller than
∂A/∂t . This follows directly from (3.2) and (5.5) and from the boundary conditions
(B 4), (B 6), (B 8) and (B 11). Because of the boundary conditions of δpb and δub

the quantity δu + δp/ρbub = O(ε∂A/∂t) vanishes at leading order. The fact that the
vorticity wave vanishes up to the first order is also due to (5.5).

(d) Clearly, the solution required carrying the perturbation analysis to the second
order in ε. Qualitatively the same results apply to non-reacting shocks for which a
similar analysis may be carried out.

6. Formulation of the problem for unstable disturbances
6.1. Length and timescales of the unstable disturbances

We look now for unstable modes of the detonation regimes described in § 4, namely
those for which Re(σ ) > 0 and l = l− (see § 3.3). The radiation condition at infinity
(3.7) then shows that the scaling of the wavelength of these unstable disturbances
must be different from that in (5.5). Anticipating l

(r)
− > 0, the radiation condition

(3.7) shows that, according to (5.6) and (A 8), the ratio |k|/l
(r)
− cannot be smaller

than
√

ε. The ratio, therefore, must be larger than that in (5.5), and the acoustic
waves associated with unstable disturbances propagate in the burnt gas in a more
tilted direction than that found in the preceding section. The order of magnitude
of the transverse component of the flow velocity (3.4) is therefore also different.
A consequence is that the range of the stable modes described in the preceding
section (neutral upstream-running modes, Re(σ ) = 0, with no modification of the
detonation structure) cannot be adjacent to the range in the wavenumber coordinate
of unstable modes characterized by Re(σ ) > 0. The transition should occur through
a finite-wavelength band of neutral modes involving modifications of the detonation
structure and ranging from stable to unstable situations in the sense of the criterion
in § 3.4.

Setting

|k|/l(r)− = O(ε1/2), (6.1)



136 P. Clavin and F. A. Williams

and introducing (A 8) and (6.1) into (3.2), ω = abl
(r)
− [(1 − Mb) + (1/2)(k/l

(r)
− )2 + · · ·],

we found the acoustic frequency in the burnt gas to be

ω/abl
(r)
− = O(ε), ω/abk = O(ε1/2). (6.2)

Equations (6.1) and (6.2) correspond to acoustic waves propagating in a direction
slightly tilted from the normal direction to the unperturbed front, but more tilted than
that in § 5, as mentioned before. With attention focused on instabilities whose linear
growth rates are not larger than the frequency of the acoustic waves, the characteristic
evolution time is then given by (6.2).

Since Chapman–Jouguet detonations propagate at nearly sonic velocity when the
heat release is small, the detonation thickness is determined by the sound speed
and the reaction time d = autr . The appropriate length scale and time scale are
then obtained by anticipating that the shortest length scale in the flow, namely the
acoustic wavelength, is not shorter than the detonation thickness. The appropriate
scaled coordinates of order unity and the non-dimensional time of order unity,
characterizing both the frequency and the growth or the decay rate, are then obtained
by the use of (6.1) and (6.2),

ξ = (x − A)/(autr ), η = ε1/2y/(autr ), τ = εt/tr , (6.3)

together with

1

au

∂A

∂t
= ε

∂α

∂τ
,

∂A

∂y
= ε1/2 ∂α

∂η
, (6.4)

where α =A/(autr ), with ∂α/∂τ and ∂α/∂η being of order unity. Similar to the planar
case studied earlier by Clavin & Williams (2002), the slow time scale is associated
with the upstream-running acoustic wave, which propagates in the gas in a direction
quasi-perpendicular to the detonation front, at a velocity slightly higher than the
velocity of the unperturbed gas flowing downstream. This wave controls the longest
time in the feedback loop mentioned in § 1. Mass, momentum and energy conservation
within the interior of detonation then show that the quantities u/au − 1 and p/pu − 1
are both of order ε, and that the ratios v/au and T/Tu − 1 are of order ε3/2 and ε2,
respectively, leading to

μ = 1 + εμ1, π = επ1, ν = ε3/2ν2, ∂v/∂y = ε2ν ′
2, θ = ε2θ2, a/au = 1 + O(ε2),

(6.5)

where the notation of (4.8) has been used, and where μ1, π1, ν2, ν ′
2 and θ2 are of order

unity and are functions of the reduced variables ξ , η, τ . Expansion of (3.1) gives, at
leading order, for �± = l±autr ,

i�± =
s ±

√
2κ2

√
f − 1 + s2

2
√

f − 1
, (6.6)

where s and κ are non-dimensional quantities of order unity,

σ = εs/tr , k = ε1/2κ/(autr ). (6.7)

6.2. The leading-order equations

The ordering of the temperature implies that the sound speed is constant up to terms
of order ε2, au = au. Through the first two orders in ε, the variation of the sound
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speed may, therefore, be neglected in (2.7), giving[
∂

∂t
+ (u + au)

∂

∂x

] (
δp

pu

+
δu

au

)
+ δu

d

dx

(
p

pu

+
u

au

)
= ε2 δw

tr
− ∂v

∂y
, (6.8)

[
∂

∂t
+ (u − au)

∂

∂x

] (
δp

pu

− δu

au

)
+ δu

d

dx

(
p

pu

− u

au

)
= ε2 δw

tr
− ∂v

∂y
, (6.9)

(
∂

∂t
+ u

∂

∂x

) (
v

au

)
= −au

∂

∂y

(
δp

pu

)
. (6.10)

It is worth noticing that the differential operator in the first term on the left-hand
side of (6.9) is of order ε,

tr

[
∂

∂t
+ (u − au)

∂

∂x

]
= ε

[
∂

∂τ
+

(
μ1 − ∂α

∂τ

)
∂

∂ξ

]
, (6.11)

and it represents an upstream-running acoustic wave. Equations (6.8), (6.9) and (6.11)
are the main simplifications of the limiting case considered here.

The stability analysis is performed in a Fourier decomposition and in the reduced
system of coordinates (ξ, η, τ ) defined in (6.3) by setting α = α̃eiκη+sτ , with κ and s

being of order unity. Corresponding field functions φ are then written as

φ = φ + δφ, δφ = φ̃(ξ )α̃eiκη+sτ .

Use of (A 11) in (6.8) with the boundary conditions (4.6) and (4.7) then yields

∂

∂ξ
(μ̃1 + π̃1) = 0, μ̃1 = −π̃1. (6.12)

To leading order in ε, the expansion of (6.9) and (6.10) then gives two coupled
equations for the Fourier transforms μ̃1 and ν̃ ′

2 of the longitudinal velocity and of the
transverse gradient of the transverse velocity, respectively,

sμ̃1 +
d

dξ
(μ1μ̃1) − s

d

dξ
μ1 = − w̃2

2
+

ν̃ ′
2

2
, (6.13)

d

dξ
ν̃ ′

2 = −κ2μ̃1 + κ2 d

dξ
μ1, (6.14)

where relation (A 12) d(π1 + μ1) = 0 has been used, and where the reaction rate
w2(ξ, η, τ ) is obtained by solving the two equations for Y and θ2 obtained from the
expansion of (2.6), w2(ξ, η, τ ) = w(θ2, Y ),

∂

∂ξ
Y = w(θ2, Y ),

∂

∂ξ

[
θ2 − (γ − 1)

ε
π1

]
= w(θ2, Y ), (6.15)

where γ = 1 to leading order in ε. Boundary conditions at the shock for (6.13)–(6.15),
obtained from (4.6) and (4.7), are

ξ = 0 : μ̃1 = 2s, ν̃2 = −2κ2
√

f , Y = 0, θ̃2 = −2
(γ − 1)

ε
s. (6.16)

Eliminating μ̃1 from (6.13) and (6.14) leads to a second-order ordinary differential
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equation for ν̃ ′
2 with two boundary conditions at the shock,

d

dξ

(
q

d

dξ
ν̃ ′

2

)
− s

d

dξ
ν̃ ′

2 − κ2

2
ν̃ ′

2 = −κ2 d

dξ

(
q

d

dξ
q

)
− κ2

2
w̃2, (6.17)

ξ = 0 : ν̃2 = −2κ2
√

f ,
d

dξ
ν̃ ′

2 = −κ2

(
2s +

d

dξ
q

)
, (6.18)

where q(ξ ) = − μ1(ξ ) is a positive function decreasing from
√

f at ξ = 0 to
√

f − 1
at ξ → +∞. This function represents the inner structure of the unperturbed planar
detonation,

2q
d

dξ
q = −w2,

∫ +∞

0

w2(ξ ) dξ = 1, q(0) =
√

f . (6.19)

6.3. The downstream boundary condition

The extra condition that has to be used for determining the unknown s(κ) is the
boundedness condition in the burnt gas where the reaction has gone to completion,

ξ → +∞ : ν̃2 ∝ ei�−ξ . (6.20)

Equation (3.6) (incompressibility of the vorticity wave) is not helpful here. To leading
order, this condition yields

ξ → +∞ :

(
s +

√
2κ2

√
f − 1 + s2

)
μ̃1 = ν̃ ′

2, (6.21)

where, according to (6.14), μ̃1 = − (dν̃ ′
2/dξ )/κ2, the unperturbed flow being uniform

in the burnt gas, dμ1/dξ = 0. Equation (6.21) is automatically satisfied by the solution
of (6.17) in the burnt gas, where ν̃2 ∝ ei�−ξ . This is an illustration of the fact that the
perturbation of the flow in the burnt gas is a purely acoustic wave to leading order
in ε, δπ1 + δμ1 = 0. In other words, the flow involved in the vorticity wave is of next
order in the asymptotic analysis, since non-zero constant terms are excluded from
the solutions μ̃1(ξ ) and ν̃ ′

2(ξ ) of (6.12)–(6.18). To leading order in ε, the flow velocity
varies on the short length scale only (see also the expansion of (6.8) and (6.9) in the
burnt gas).

The problem defined by (6.17)–(6.20) is closed when the heat-release rate w̃2(ξ ),
the solution of (6.15), is known. However, (6.15) is coupled to (6.17) through
compressibility effects which introduce the pressure term in energy conservation,
π̃1 = −μ̃1, the second equation in (6.15). Therefore, the heat-release-rate perturbations
strictly cannot be determined independently of the flow. A simplification, however,
is provided by an approximation which is well verified in real detonations. Careful
attention, therefore, needs to be paid to selection of appropriate approximations for
the perturbation of the heat-release rate, as will now be demonstrated.

7. The heat-release rate
7.1. General considerations

Since Y = 0 at ξ = 0 and Y → 1 at ξ → ∞, spatial integration of the first in (6.15)
readily shows that ∫ ∞

0

w2 dξ = 1,

∫ ∞

0

w̃2 dξ = 0. (7.1)
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This is true in general, provided that chemical equilibrium is reached at the exit of
the detonation structure, the total chemical heat release being constant.

If the perturbed heat-release rate w̃2 was a specified function of ξ , then the problem
defined by (6.17)–(6.20) would become a second-order linear problem with three
boundary conditions and thereby may determine a dispersion condition s(κ) that
must be satisfied for a solution to exist. This would have been the case if, for example,
there were no pressure term in (6.15). However, this term cannot be omitted on the
basis of an order-of-magnitude analysis.

Equation (6.15) describes a problem which is of third order when the heat-release-
rate perturbations depend on the temperature perturbations, that is, δw2(ξ ) involves
δθ(ξ ). If, in addition, it depends on other variables, such as species concentrations that
obey differential equations, then the problem would be of higher than third order.
A more general state-dependent heat-release rate would have w(T , p, Y ), a specific
nonlinear function of local state variables, temperature, pressure, Y and so on. On
the basis of the realization that the reaction rates in gaseous detonations typically are
more strongly dependent on temperature than on pressure or composition, orderings
generally are introduced rendering the last two effects negligible compared with the
first. This leads in perturbation to δw2(ξ ) = Bw′

T (ξ )δθ2(ξ ), where w′
T (ξ ) is proportional

to the partial derivative of the reaction rate with respect to the temperature ∂w/∂T

computed in the unperturbed planar detonation, and B is a parameter describing the
sensitivity of the reaction rate to the temperature. This is typical of what is obtained
through activation-energy asymptotics and necessitates treating energy conservation
(6.15) along with the rest of the problem.

The previous analysis for the limit of strong overdrive by Clavin & He (1996b),
Clavin et al. (1997) and Daou & Clavin (2003) essentially selected this description, but,
in that limit, the pressure term in (6.15) was not present in this equation, because the
compressibility effect that it accounts for in energy conservation is of higher order in
the low-speed flow encountered at strong overdrive in the Newtonian limit. However,
an unsteady term, which arises as a consequence of the entropy-wave convection
behind the shock, was included in (6.15). A consequence was that the heat-release-
rate perturbation depended not only on ξ but also on the temperature perturbation
at the Neumann state, evaluated at an earlier time τ − ξ . This delay effect resulted in
the problem finally involving integral equations.

In the present problem, the convective delay is negligibly short, and so the heat
release responds quasi-steadily to temperature variations. Here the delay is associated
with slow upstream acoustic-wave propagation. However, as already mentioned, the
compressibility effects on the reaction rate cannot be neglected. A model for the
chemistry in realistic detonations helps to overcome this difficulty, as now explained.

7.2. Approximations for the heat-release rate

A helpful simplification is to assume that the heat-release-rate perturbations
depend only on the Neumann-state temperature fluctuations and are insensitive
to temperature variations elsewhere. This results in w̃2 = bw′

N (ξ )θ̃2(ξ =0), where b is
a positive parameter describing the sensitivity of the reaction rate to the Neumann
temperature and w′

N (ξ ) is a function of order unity which satisfies
∫ ∞

0
w′

N (ξ ) dξ = 0.
The non-dimensional perturbation of the Neumann temperature θ2(ξ = 0) is given by
(6.16), so that

w̃2 = −hw′
N (ξ )s,

∫ ∞

0

w′
N (ξ ) dξ = 0, h = 2b(γ − 1)/ε, (7.2)

where h is a positive scalar.
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With this simplification, the problem is reduced to the second-order problem defined
in (6.17)–(6.20), because (6.15) for energy conservation, taking into account the
compressibility effects, may be then ignored initially and used only to obtain the
perturbation of the temperature profile afterwards.

An approximation of the type of (7.2) has been introduced previously from a
purely formal point of view, namely simply defining reaction-rate perturbations to
be proportional to the Neumann temperature rather than to the local temperature.
Equation (7.2) can, however, be afforded better justification from the viewpoint of
the chemistry that occurs in real detonations.

Real gaseous detonations have a strongly temperature-dependent induction zone
involving chain initiation and branching. This induction zone is at most weakly
exothermic and is followed by strongly exothermic but quasi-temperature-insensitive
recombination reactions effecting chain termination in the principal heat-release zone.
In addition, in conditions of real detonations, the flow in the induction zone is
sufficiently subsonic that it is not sensitive to the compressibility-induced fluctuations
of temperature. With this chemistry, the induction zone everywhere is at the Neumann
temperature, and so it is only that temperature, and not the temperature later, that
affects the chemical heat-release rate. Good physical justifications thus can be given
for the selection made in (7.2).

As an explicit model of this type, the induction zone my be considered to be
energetically neutral, to persist for a temperature-dependent induction time and
to be followed by a heat-release zone in which the reaction rate is independent
of temperature. In the well-known square-wave model, the reaction takes place
instantaneously after the induction period and results in w′

N (ξ ) = δ′(ξ − ξr ), where
δ′ denotes the derivative of the Dirac delta function. If instead the reaction rate
is constant during a finite time until the reactants are depleted, this model results
in w′

N (ξ ) = δ(ξ − ξi) − δ(ξ − ξr ), where δ denotes the Dirac delta function, ξi and
ξr (ξi < ξr ) being respectively the non-dimensional induction length and detonation
thickness of the unperturbed planar solution. If, after induction, the reaction rate
instead decays monotonically with a characteristic fixed time, then

w′
N (ξ ) = δ(ξ − ξi) − f (ξ − ξi)H (ξ − ξi), (7.3)

where H (ξ ) and f (ξ ) denote, respectively, the Heaviside step function and a
normalized positive function, f > 0,

∫ ∞
0

f (ξ ) dξ = 1.
Generally speaking, the dynamics of the detonation is obtained by solving integral

equations (see Clavin et al. 1997 for the strongly overdriven regimes and § 8.1 below
for the neighbourhood of the Chapman–Jouguet condition). Discontinuous models,
as those mentioned above, usually lead to pathological dynamics in integral-equation
formulations (see § 8.4 for the regimes considered here). Continuous models for the
heat-release rate, therefore, have to be considered to develop well-behaved solutions.
In real detonations, the temperature increases continuously, slightly at the beginning
of the induction zone, strongly at the end of the induction zone and finally smoothly
up to the end of the reaction zone. Typical functions w′

N (ξ ) in real detonations
vanish at the Neumann state and also at a point ξ = ξi , as well as in the burnt gas,
w′

N (0) = w′
N (ξi) = w′

N (∞) = 0. They are positive for 0 < ξ < ξi and negative for ξ > ξi .
The continuous model that was introduced earlier in the study of strongly overdriven
regimes (see Clavin & He 1996b; Clavin et al. 1997),

w′
N (ξ ) =

d

dξ
(ξw), w(ξ ) =

mn+1

n!
ξne−mξ , (7.4)
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is useful as a specific example for studying the transition from stable to unstable
situations (see § 8.3). The details of the linear dynamics of the detonation depend
on the specific shape of the function w′

N (ξ ), but the general trends should be well
represented, at least qualitatively, by model (7.4).

8. Solution and discussion of the results
8.1. The general dispersion relation

The problem addressed initially is obtained from (6.17)–(6.20) with (7.2). It is
convenient to employ

ζ =

∫ ξ

0

dξ

q
(8.1)

as the independent variable and to introduce the notation

Z(ζ ) = ν̃ ′
2(ξ ), R(ζ ) = q(ξ ), F (ζ ) = hq(ξ )w′

N (ξ ),

∫ +∞

0

F (ζ ) dζ = 0, (8.2)

where Z(ζ ) is an unknown function, while R(ζ ) and F (ζ ) are given functions of ζ

characterizing the unperturbed planar detonation, the zero integral in (8.2) coming
from (7.2). The functions R(ζ ) and F (ζ ) both depend on properties of the heat-
release-rate function. According to (6.19), R(ζ ) is a positive monotonically decreasing
function with R(0) =

√
f , limζ→+∞ R(ζ ) =

√
f − 1, representing the density profile of

the unperturbed planar detonation structure, while F (ζ ) describes the sensitivity of
the distribution of heat-release-rate to the Neumann temperature. It characterizes,
therefore, the deformation of the planar detonation structure when varying the
overdrive factor for a fixed heat release. In this manner, it is found that

d2

dζ 2
Z − s

d

dζ
Z − κ2

2
RZ = κ2S, S = −

(
d2

dζ 2
R − s

2
F

)
, (8.3)

ζ = 0 : Z = −2κ2
√

f ,
d

dζ
Z = −κ2

(
2s

√
f +

d

dζ
R

)
, (8.4)

ζ → +∞ : Z ∝ eiζLb−, (8.5)

with by definition

ilb± = i�±
√

f − 1 =
s ±

√
2κ2

√
f − 1 + s2

2
. (8.6)

Equations (8.3)–(8.5) determine s as a function of κ . Equations (8.4) at the Neumann
state are the Rankine–Hugoniot conditions, and (8.5) ensures that the acoustic waves
associated with unstable disturbances, Re(s) > 0, are bounded at infinity.

The physical interpretation is clear. The left-hand side of the first (8.3) represents
upstream-running acoustic waves propagating across the detonation structure in
a direction quasi-perpendicular to the unperturbed front. The source term κ2S

on the right-hand side results from perturbation of the heat-release rate through
front wrinkling. The first term in S comes from the quasi-steady modification of
the detonation structure, while the second term represents unsteady effects. The
boundedness condition at infinity (8.5) corresponds to a radiative condition in the
burnt gas, as discussed previously.

The solution may be written in terms of two particular solutions Φ+ and Φ−
of the homogeneous equation, d2Φ/dζ 2 − sdΦ/dζ − κ2RΦ/2 = 0, satisfying the two
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boundary conditions

lim
ζ→+∞

Φ± ∝ eiζLb± and Φ±(ζ = 0) = 1. (8.7)

The solution to (8.3) satisfying the boundedness condition (8.5) at infinity in the burnt
gas may then be written in terms of the boundary value at the shock, Z(0),

Z(ζ ) =

[
Z(0) + κ2

∫ ∞

0

dζ
Φ−S

W
− κ2

∫ ζ

0

dζ
Φ+S

W

]
Φ−(ζ )−Φ+(ζ )κ2

∫ ∞

ζ

dζ
Φ−S

W
, (8.8)

where W = Φ−Φ ′
+ − Φ+Φ ′

− is the Wronskian, Φ ′ denoting the derivative with respect
to ζ , Φ ′ =dΦ/dζ . The derivative at the Neumann state Z′(0) ≡ dZ/dζ |ζ = 0 as obtained
from (8.8), is

Z(0)ζ=0 = Z(0)Φ ′
−(0) +

[
Φ ′

−(0) − Φ ′
+(0)

]
κ2

∫ ∞

0

dζ
Φ−S

W
. (8.9)

The dispersion relation is then obtained when the expressions Z(0) and Z′(0) in (8.4)
together with the definition of S in (8.3) are introduced into (8.9). If it is assumed that
the heat-release rate is negligible at the Neumann state, then R′(0) ≡ dR/dζ |ζ =0 = 0.
Since generally this is the case in real detonations,

R′(0) = 0 : Φ ′
±(0) = ilN±, ilN± =

s ±
√

2κ2
√

f + s2

2
, (8.10)

the dispersion relation then takes the form√
f

(
s +

√
2κ2

√
f + s2

)
=

√
2κ2

√
f + s2

∫ ∞

0

dζ
Φ−S

W
. (8.11)

This dispersion relation is valid for Re(s) > 0 and for any value of f � 1 satisfying
ε2f � 1. The Chapman–Jouguet detonation corresponds to f =1.

Note that there is no solution to the dispersion relation when the source term S

is neglected. This is consistent with the fact that, according to § 6.1, the scaling laws
for the unstable linear modes, Re(s) > 0, are different from those at large wavelength
when the modifications of the distribution of the heat-release rate are negligible. In
other words, the instabilities which are characterized by Re(s) > 0 always result from
the modifications of the inner structure of the detonation.

Equation (8.11) is a dispersion relation determining s when κ is given. This general
dispersion relation, however, is very complicated. Because of the spatial variation
of R(ζ ), explicit analytical expressions for Φ−, Φ+ and W cannot be written in the
general case. To explore properties of the dispersion relation further it is helpful to
introduce additional approximations.

8.2. Simplification at moderate overdrive

Study of the case of moderate overdrive can enhance understanding of the
multidimensional problem. By assuming that f is a sufficiently large number, the
variation of Q across the detonation structure, from

√
f to

√
f − 1, may be neglected

in the equations for Φ− and Φ+. The solutions satisfying (8.7) then become

Φ± ≈ eiζLN±, W ≈ eζ s

√
2κ2

√
f + s2. (8.12)

This limit still corresponds to slightly overdriven regimes near Chapman–Jouguet
conditions for small heat release, provided that the quantity ε2f is a small number.
This limit leads to the simplest model for studying the coupling of the acoustic waves
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and heat-release variations in the inner structure, which is involved in the dynamics of
gaseous detonations. The acoustic waves propagate in a quasi-uniform medium, and
the feedback loop mentioned in the introduction may, therefore, be easily described
in simple mathematical terms with this approximation.

When the second spatial derivative of R is not singular, the first term in (8.3) for
S becomes negligible, because it is proportional to

√
f −

√
f − 1 and (8.11), written

with the ξ -variable, then yields

s +

√
2κ2

√
f + s2 = s

h

2
√

f

∫ ∞

0

w′
N (ξ )e−ξ (s+

√
2κ2

√
f +s2)/2

√
f dξ. (8.13)

The plus sign in front of the square root in the exponent on the right-hand side
of (8.13) comes from the term eiζLN−/eζ s on the right-hand side of (8.11). After
introduction of the notation

s ′ ≡ s/
√

f , κ ′2 ≡ 2κ2/
√

f , h′ ≡ h/(2
√

f ), (8.14)

(8.13) reads

s ′ +
√

κ ′2 + s ′2 = s ′h′
∫ +∞

0

w′
N (ξ )e−ξ(s ′+

√
κ ′2+s ′2)/2dξ, (8.15)

where s ′ and κ ′ are the reduced complex growth rate and the reduced wavenumber,
respectively, and where h′ is a parameter that increases with increasing temperature
sensitivity or with approach to Chapman–Jouguet conditions (decreasing the overdrive
factor f ).

For a given wavenumber κ ′, the dispersion relation (8.15) is an equation for the
complex growth rate s ′(κ ′) involving a single scalar parameter h′.

8.3. Analytical expressions at bifurcation

The function w′
N (ξ ) represents the deformation of the distribution of the heat-release

rate. Its general shape was discussed at the end of § 7.2. For a given smooth function
w′

N (ξ ), (8.15) describes a Hopf bifurcation which occurs upon increasing the ratio
h/

√
f , as may be checked numerically. Below a critical value there is no solution

with Re(s ′) > 0, while a narrow band of unstable modes around a finite wavelength
appears just above the critical value. The regime of cellular detonation thus appears
either by approaching Chapman–Jouguet conditions (decreasing f ) or by increasing
the thermal sensitivity of the reaction rate (increasing h). For a given value of the
ratio h/

√
f , the bifurcation occurs also by stiffening the function w′

N (ξ ). The stiffer
the function w′

N (ξ ) is, the smaller is the critical value of the ratio h/
√

f at which
the cellular structures appear, and the larger are the frequency of oscillation and the
wavenumber of the cellular structures.

The study of the bifurcation may be carried out analytically for the particular
example in (7.4), with n being an integer, for which the Laplace transform may be
written explicitly,

∫ ∞
0

w′
N (ξ )e−ξzdξ = (n + 1)(z/m) [1 + (z/m)]−(n+2). In this case, (8.15)

becomes a polynomial equation for the reduced complex linear growth rate s ′,[
2 +

s ′ +
√

κ ′2 + s ′2

m

](n+2)

=
βn+2s ′

m
, βn+2 ≡ (n + 1)2nh√

f
. (8.16)

The stiffness of the induction zone and of the heat-release zone increases when n or
m is increased. The ratio n/m measures the induction length. Equation (8.16) may be
investigated without loss of generality by taking m = 1, because if m �= 1 it is merely
necessary to replace s ′ and κ ′ by s ′/m and κ ′/m, respectively. We are, thus, left with
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a polynomial equation for s ′(κ ′) containing two parameters, n and β , characterizing
the stiffness of the induction zone and the sensitivity to temperature, respectively.

The method for determining the bifurcation point is classical. Introducing purely
imaginary roots s ′ = ± iω′ into (8.16) with ω′ > 0, one gets two equations relating
to the three real quantities ω′, κ ′ and β , one equation for the real part of (8.16)
and the other for the imaginary part. These two equations are compatible only for a
particular relation between the bifurcation parameter β and the wavenumber κ ′. The
bifurcation is then obtained as the minimum of the parameter β for which a solution
exists.

Two cases must be considered separately, depending on the relative value of ω′ and
κ ′:

case I, κ ′ > ω′ : (2 +
√

κ ′2 − ω′2) = βω′(1/(n+2))Re[(±i)(1/(n+2))] (8.17)

±ω′ = βω′(1/(n+2))Im[(±i)(1/(n+2))] (8.18)

case II, κ ′ < ω′ : ±(ω′ +
√

ω′2 − κ ′2) = βω′(1/(n+2))Im[(±i)(1/(n+2))] (8.19)

2 = βω′(1/(n+2))Re[(±i)(1/(n+2))]. (8.20)

On the left-hand side of (8.19), the plus sign in the parenthesis is selected because we
focus our attention on the unstable situations for which Re(s ′) � 0 with a boundedness
condition at infinity. This may be explained as follows. Consider a weakly unstable
case, adjacent to the marginal case, s ′ = ± iω′ + ε ′, with 0 < ε ′ � ω′ and ω′ >κ ′. The +
sign in front of the square root in the bracket on the left-hand side of (8.16), meaning
that the real part of the square root must be positive, imposes the + sign in (8.19), as
may be verified to first order in the expansion in small ε ′,√

s ′2 + κ ′2 ≈
√

−(ω′2 − κ ′2)

[
1 − (±iω′)ε ′

(ω′2 − κ ′2)

]
⇒ −(±iω′)

√
−(ω′2 − κ ′2) > 0.

The ± sign in front of iω′ must be therefore the same as that in front of i
√

ω′2 − κ ′2,
as written in (8.19).

According to (8.17) and (8.20), the only roots among the 2(n + 2) roots, (+i)(1/(n+2))

and (−i)(1/(n+2)), that are relevant are those having a positive real part. The
computation is the same for all of them. Let us consider a particular one eiθl with
0 <θl < π/2, the case −π/2 <θl < 0 being treated in the same way.

Consider the first case I, ω′ < κ ′. The bifurcation parameter β may be eliminated
from (8.17) and (8.18), yielding

ω′

tl
− 2 =

√
κ ′2 − ω′2, tl ≡ tan θl > 0, (8.21)

which provides us with an expression for ω′ in terms of κ ′ when Re(s ′) = 0,

κ ′ > 2tl :
ω′

tl
=

2tl +
√

4 + (κ ′2 − 4)
(
1 + t2

l

)
(
1 + t2

l

) . (8.22)

This solution, which corresponds to ω′ <κ ′, is valid only for κ ′ > 2tl in order to satisfy
the condition ω′ > 2tl which is imposed by (8.21). There is no solution to (8.21) for
κ ′ < 2tl . Note also that the straight line ω′ = κ ′ in the plan (κ ′, ω′) is tangent at
the point (κ ′ = 2tl , ω′ = 2tl) to the hyperbolic curve ω′(κ ′) corresponding to (8.22), the
curve being below the tangent elsewhere for κ ′ > 0. According to (8.18), the bifurcation
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parameter β may be expressed in term of ω′ as

β =
ω′(n+1)/(n+2)

sin θl

, βm =
(2tl)

(n+1)/(n+2)

sin θl

, (8.23)

and the minimum value βm of β in this branch of solution corresponds to κ ′ = 2tl
and ω′ = 2tl .

Now consider case II. Eliminating β yields

ω′ − 2tl = −
√

ω′2 − κ ′2, (8.24)

whose solution is

κ ′ < 2tl : ω′ = tl +
κ ′2

4tl
, (8.25)

which is valid only for κ ′ < 2tl since, according to (8.24), ω′ < 2tl . The straight line
ω′ = κ ′ is also tangent at the point (κ ′ = 2tl , ω′ = 2tl) to the parabolic curve ω′(κ ′)
corresponding to (8.25), the curve being above the tangent elsewhere. According to
(8.20),

β =
2

cos θl

1

ω′(1/(n+2))
, βm =

(2tl)
(n+1)/(n+2)

sin θl

, (8.26)

and the minimum of β for case II corresponds to the same point as in case I, κ ′ = 2tl
and ω′ = 2tl , leading to the same minimum value βm.

A linear expansion s ′ → iω′ + δs ′, κ ′ → κ ′ + δκ ′ then shows that Re(δs ′) > 0
corresponds to δκ ′ < 0 in case I and to δκ ′ > 0 in case II. This shows that, for a fixed
θl , unstable solutions with Re(s ′) > 0 bifurcate when β is increased above βm. This last
quantity varies with θl . The critical value βc of the bifurcation parameter associated
with the onset of the instability is, therefore, the minimum of all the values of βm

belonging to the finite set associated with all the possible values of θl . Introducing
the notation θlc for this particular value, one gets the following critical values:

βc =
(2 tan θlc)

(n+1)/(n+2)

sin θlc

, κ ′
c = 2 tan θlc, ω′

c = 2 tan θlc, (8.27)

or, when written in the original variables according to (8.14) and (8.16),(
h√
f

)
c

=
(2 tan θlc)

n+1

(n + 1)2n(sin θlc)n+2
, κc = m

√
2f 1/4 tan θlc, Im(sc) = 2m

√
f tan θlc,

(8.28)
yielding, according to (6.7),

kc = ε1/2 n
√

2f 1/4 tan θlc

auti
, ωc = ε

2n
√

f tan θlc

ti
, (8.29)

where ti =(n/m)tr is the induction time, kc and ωc being the critical wavenumber and
the critical frequency, ω = Im(σ ).

These results describe how the critical thermal sensitivity hc decreases as the
Chapman–Jouguet regime is approached (decreasing f towards unity), the key
dependence being that hc is proportional to

√
f . Correspondingly, increasing the

overdrive factor promotes the stability of the detonation. Another outcome in (8.29)
is the dependence of the critical wavenumber and the critical frequency on f , showing
that they decrease as the Chapman–Jouguet regime is approached.
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8.4. Pathological dynamics for singular distribution of the heat-release rate

The function w′
N (ξ ) in (7.4) becomes stiffer and stiffer when n and m are increased.

The function becomes singular with a finite induction length in the double limit
n → ∞, m → ∞, n/m fixed. The angle θlc which is involved in the critical value βc in
(8.27), decreases as 1/

√
n, when n is increased. According to (8.28), the critical value

(h/
√

f )c, therefore, decreases like 1/
√

n, while the critical frequency and wavenumber
increase like

√
n. This shows how increasing the stiffness of the distribution of the

heat-release rate promotes the instability.
In the singular limit n → ∞, m → ∞, n/m fixed, the dynamics of the detonation

becomes pathological since instabilities, involving infinite growth rate, infinite
frequencies and infinite wavenumbers, systematically develop, whatever be the thermal
sensitivity h and/or the overdrive factor f .

A similar pathology, but with a non-zero critical value of the bifurcation parameter,
is observed with the discontinuous model (7.3) with f (ξ ) = e−ξ . Equation (8.15)
yields [

1 +
(s ′ +

√
s ′2 + κ ′2)

2

]
=

s ′h

4
√

f
e−(s ′+

√
s ′2+κ ′2)ξi/2. (8.30)

Looking for the bifurcation by the same method as before, and focusing first our
attention on the case ω′ >κ ′, we are led to solve the system of equations

1 =
h

4
√

f
ω′ sin

[
(ω′ +

√
ω′2 − κ ′2)

2
ξi

]
, (8.31)

(ω′ +
√

ω′2 − κ ′2)

2
=

h

4
√

f
ω′ cos

[
(ω′ +

√
ω′2 − κ ′2)

2
ξi

]
. (8.32)

Eliminating the bifurcation parameter leads to the equation ξi/z = tan z for

z = (ω′+
√

ω′2 − κ ′2)ξi/2 with, according to (8.31), sin z > 0. This leads to an unbounded
countable set of increasing values of z, zn = 2πn + rn, with π/2 > rn � 0, rn decreasing
to zero as the integer n increases. For a given n, the function ω′ of κ ′ is the part of the
parabola ω′(κ ′) = (zn/ξi) + κ ′2/(4(zn/ξi)) limited by the two points (κ ′ =0, ω′ = zn/ξi)
and κ ′ = ω′ = 2zn/ξi , in order to satisfy the conditions κ � 0 and ω′ � 2z/ξi . Therefore,
according to (8.32), the bifurcation parameter h/

√
f reaches its minimum value 2 when

ω′ = κ ′ for cos z → 1, which corresponds to infinite frequencies and wavenumbers.
The same minimum value of the bifurcation parameter, with the same pathology, is
observed in the case ω′ <κ ′,

1 +

√
κ ′2 − ω′2

2
=

h

4
√

f
ω′e−ξi (

√
κ ′2−ω′2)/2 sin(ω′ξi/2), (8.33)

1

2
=

h

4
√

f
e−ξi (

√
κ ′2−ω′2)/2 cos(ω′ξi/2), (8.34)

yielding

1 +

√
κ ′2 − ω′2

2
=

h

4
√

f
ω′ tan(ω′ξi/2). (8.35)

According to (8.34), the bifurcation parameter must satisfy h/
√

f � 2, and the
minimum value 2 corresponds to infinite frequencies and wavenumbers.
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9. Conclusions and perspectives
The multidimensional stability of gaseous detonations near Chapman–Jouguet

conditions has been investigated for small heat release. This study is complementary
to our 1997 analysis of strongly overdriven detonations for which, according to a
Newtonian approximation, the cellular structures result from an instability in the
coupling of the vorticity–entropy wave with the heat-release rate (see Clavin et al.
1997). For the conditions investigated in the present paper, the instability results
from the coupling of the acoustic waves with the heat-release rate, the entropy–
vorticty wave playing a negligible role at leading order. The end result assumes,
however, a similar form to that of our previous strong-overdrive result, namely an
integral equation can be obtained for the linear growth rate involving a function
of space w′

N (ξ ) representing the modification of the distribution of heat-release rate
of the unperturbed planar detonation when varying the overdrive. Equation (8.11)
is a dispersion relation for unstable detonations with a positive real part of the
linear growth rate, Re(σ ) > 0, valid also at the Champan–Jouguet conditions for any
chemistry. Note that, as explained in § 6.1, detonations with Re(σ ) = 0, unstable in
the sense discussed in § 3.4, may also exist to fill the finite-wavelength gap joining the
stable disturbances with Re(σ ) = 0 at long wavelength exhibited in § 5.

The integral equation becomes simpler at moderate overdrive, still close to the
Chapman–Jouget conditions, as seen in (8.15). A polynomial (8.16) for the dispersion
relation was then obtained for a model of distribution w′

N (ξ ) presented in (7.4).
The result shows the existence of a Hopf bifurcation point at a finite wavelength,
the characteristics of which are given in (8.28) and (8.29) in which the stiffness of the
induction zone and of the exothermic zone increases with n and m, the thickness of
the induction zone being proportional to the ratio n/m. For a given shape w′

N (ξ ), that
is for n and m fixed, there is a single scalar bifurcation parameter h/

√
f grouping the

scaled overdrive factor f defined in (4.2) and the sensitivity of the heat-release rate
to temperature h of (7.2). The instability is promoted by increasing the sensitivity or
by approaching the Chapman–Jouguet condition (f = 1).

For fixed values of the sensitivity and of the overdrive factor, the instability is
promoted by increasing the stiffness of w′

N (ξ ). At the bifurcation point, both the
wavelength of the unstable disturbances and its oscillatory period decrease when the
stiffness of w′

N (ξ ) is increased. In the limit of a singular function w′
N (ξ ), when n and

m go to infinity, n/m fixed, the linear dynamics becomes pathological, as is also the
case for the strongly overdriven detonations studied by Clavin et al. (1997). Moreover,
a pathological dynamics occurs at bifurcation when the singularity is present only
for the induction zone, with the decrease of the reaction rate in the exothermic zone
being smooth.

Although the analytical result (8.16) remains regular in the limit f = 1, that limit
is excluded in principle because of simplifications in § 8.2. The limit f = 1 is included
in (8.3) and (8.4) with the downstream boundary condition (8.5) replaced by Z = 0,
since constant values of Z at infinity must be excluded. According to (8.6), Lb+ = s

and Lb− = 0, a zero multiplier should be used in (8.5) for that case. This system of
equation deserves further numerical study for different structure of the unperturbed
detonation. Since no divergence appears in the equations, no drastic changes would
be expected from such analysis. However, no definitive answer concerning f = 1 can
be given without a special analysis.

Useful future steps in improving our understanding of detonation dynamics are
to carry out an analytical stability analysis involving both the entropy–vorticity
wave and the acoustic waves, as is the case in ordinary gaseous detonations, and
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finally to develop a weakly nonlinear analysis of cellular detonations, generalizing the
bifurcation analysis of Clavin & Denet (2002) at strong overdrive.

This work was supported by the French ANR (BLAN07-2-182685).

Appendix A. The unperturbed solution
Let us introduce the notations

P =
γ + 1

2γ

(
p

pu

− 1

)
and V =

γ + 1

2

(
ρu

ρ
− 1

)
,

whence the equations for conservation of mass, momentum and energy across the
planar detonation may be written as

P = −M2
uV , (A 1)

PV + P + V = ε2Y, (A 2)

to give

V = − 1

2M2
u

[(
M2

u − 1
)

+

√(
M2

u − 1
)2 − 4ε2M2

uY
]
, (A 3)

where Y =0 at the Neumann state and Y = 1 in the burnt-gas state, and where, in the
same notations as in § 4, the propagation Mach number may be expressed in terms
of the scaled overdrive factor defined in (4.2),

Mu =
√

1 + ε2f + ε
√

f . (A 4)

Equation (A 3) then yields

V = −(
√

f +
√

f − Y )

(
ε

Mu

)
,

VN = −2
√

f

(
ε

Mu

)
, Vb = −(

√
f +

√
f − 1)

(
ε

Mu

)
, (A 5)

and the local sound speed and Mach number are expressed as

a

au

= (1 + (2/(γ + 1))V )
Mu

M
,

M2

M2
u

=
1 + (2/(γ + 1))V

1 − (2γ /(γ + 1))M2
uV

. (A 6)

The Mach number in the burnt gas may be written in the form

1 − M2
b =

√
f − 1√

f

(
M2

u − 1
) 1

1 + (γ /(γ + 1))
(
1 +

√
f − 1/

√
f

)
(M2

u − 1)
, (A 7)

which describes also the Chapman–Jouguet condition (f = 1, Mb = 1). The expansion
of the quantity 1 − M2

b in powers of ε/Mu is obtained when the expansion of M2
u − 1,

M2
u − 1 = 2(ε/Mu)

√
f (1 + 2ε

√
f + · · ·), is introduced into (A 7),

1 − M2
b = 2

(
ε

Mu

)√
f − 1

[
1 +

(
ε

Mu

)
�

]
(A 8)

with

� = �2 + O

(
ε

Mu

)
, �2 =

2

γ + 1
(
√

f − γ
√

f − 1). (A 9)
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In the same way, the expansion of the sound speed in the burnt gas is

ab

au

= 1 +
γ − 1

γ + 1

(
ε

Mu

)
(
√

f +
√

f − 1) + · · · (A 10)

which shows that the variation of the sound speed is of the second order in the
distinguished limit ε → 0, (γ − 1) = O(ε), f = O(1). Note that the relative variations
of pressure and velocity across the detonation are opposite to leading order,(

p

pu

− 1

)
= −(

√
f +

√
f − Y ) + O(ε2) = −

(
u

uu

− 1

)
+ O(ε2), (A 11)

or, with the notations of (4.8),

π + μ = 1 + ε
√

f + O(ε2). (A 12)

Appendix B. Jump conditions for the unperturbed detonation
The perturbed boundary condition for pressure at the burnt-gas state, with

modification to the internal detonation structure neglected, is obtained when Mu

in (A 1) and (A 3) is replaced by Mu − (∂A/∂t)/au,

δVb =

√
f +

√
f − 1√

f

[
1 − ε

Mu

(
2f − 1 + 2

√
f

√
f − 1√

f +
√

f − 1

)]
Ȧ (B 1)

δPb = M2
u(2VbȦ − δVb), (B 2)

δpb

γpb

=
2

γ + 1

pu

pb

δPb, (B 3)

where the notation Ȧ = (∂A/∂t)/uu has been introduced. This yields

δpb

γpb

=
2

γ + 1

(√
f +

√
f − 1√

f − 1

)
�

∂A/∂t

ab

, (B 4)

with

� =
Mu

1 − (2γ /(γ + 1))M2
uVb

[
−1 +

1√
f +

√
f − 1

(
ε

Mu

)]
ab

au

, (B 5)

� = −1 +

(
ε

Mu

)√
f +

(
ε

Mu

)2

�2, (B 6)

where, to leading order in the distinguished limit ε → 0, (γ − 1) = O(ε), f =O(1),

�2 =
f − 1

2
. (B 7)

The perturbed boundary conditions of the flow velocity is obtained from the
equation for conservation of mass, ρbδub =(ρb − ρu)(∂A/∂t) − ubδρb, and transverse
momentum, δvb =(uu − ub)∂A/∂y, which may be written as

δub

ub

=
2

γ + 1

(
1

1 + (2/(γ + 1))Vb

)
(δVb − VbȦ), (B 8)

δvb

ub

= − 2

γ + 1

(
Vb

1 + (2/(γ + 1))Vb

)
∂A

∂y
, (B 9)
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yielding

δub

ab

=
2

γ + 1

(√
f +

√
f − 1√

f − 1

) [
1 −

(
ε

Mu

)√
f

]
∂A/∂t

ab

, (B 10)

Mb

δvb

ab

=
2

γ + 1

(√
f +

√
f − 1√

f − 1

) (
ε

Mu

)
(
√

f − 1)

[
1 +

(
ε

Mu

)
�2

]
∂A

∂y
, (B 11)

with [
1 +

(
ε

Mu

)
�2

]
=

1

1 + (2/(γ + 1))Vb

M2
b , �2 = �2 + O

(
ε

Mu

)
, (B 12)

where �2 is given in (A 9).
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